CERTAIN FINITE DIMENSIONAL MAPS AND THEIR APPLICATION TO HYPERSPACES

BY

MICHAEL LEVIN

Department of Mathematics, Haifa University
Mount Carmel, Haifa 31905, Israel
e-mail: levin@mathcs2.haifa.ac.il

ABSTRACT

In [8] Y. Sternfeld and this author gave a positive answer to the following longstanding open problem: Is the hyperspace (= the space of all subcontinua endowed with the Hausdorff metric) of a 2-dimensional continuum infinite dimensional? This result was improved in [9] where it was shown that for every positive integer number n a 2-dimensional continuum contains a 1-dimensional subcontinuum with hyperspace of dimension $\geq n$. And it was asked there: Does a 2-dimensional continuum contain a 1-dimensional subcontinuum with infinite dimensional hyperspace? In this note we answer this question in the positive.

Our proof applies maps with the following properties. A real valued map f on a compactum X is called a Bing map if every continuum that is contained in a fiber of f is hereditarily indecomposable. f is called an n-dimensional Lelek map if the union of all non-trivial continua which are contained in the fibers of f is n-dimensional. It is shown that for dim X = n + 1 the maps which are both Bing and n-dimensional Lelek maps form a dense G_{δ} -subset of the function space $C(X, \mathbb{I})$.

1. Introduction

All spaces are assumed to be separable metrizable. $\mathbb{I} = [0, 1]$. By a map we mean a continuous function.

Let X be a compactum (=compact space). 2^X denotes the space of closed subsets of X endowed with the Hausdorff metric, and C(X) is the subset of 2^X

Received June 20, 1996

which consists of the subcontinua (= compact connected subsets) of X. Both 2^X and C(X) are compact.

In [8] Y. Sternfeld and this author proved that if $\dim X = 2$ then $\dim \mathcal{C}(X) = \infty$. In [9] this result was improved by showing that actually the 1-dimensional subcontinua of X are responsible for the infinite dimensionality of $\mathcal{C}(X)$, more precisely: for every positive integer n, X contains a one-dimensional subcontinuum T_n with $\dim \mathcal{C}(T_n) \geq n$ and it was asked: Does there exist a 1-dimensional subcontinuum T with $\dim \mathcal{C}(T) = \infty$? In this note we give a positive answer to this question:

Theorem 1.1: Let X be a 2-dimensional continuum. X contains a 1-dimensional subcontinuum T with $\dim \mathcal{C}(T) = \infty$.

Our approach develops the one of [6] and [9] and applies finite dimensional maps with certain properties.

A continuum is indecomposable if it is not the sum of two proper subcontinua. It is hereditarily indecomposable if each of its subcontinua is indecomposable. A compactum is said to be a Bing compactum if its subcontinua are hereditarily indecomposable and a map is said to be a Bing map if its fibers are Bing compacta. In [7] the following was proved:

THEOREM 1.2: Let X be a compactum. Almost all maps in the function space $C(X, \mathbb{I})$ are Bing maps (where almost all= all but a set of first category).

(See [3] for another approach to constructing Bing maps.)

A map f on a compactum is said to be an n-dimensional Lelek map if the union of all non-trivial continua contained in the fibers of f is of dimension $\leq n$ (Lelek [5] constructed such an n-dimensional map from \mathbb{I}^{n+1} onto a dendrite, see also [11]). In Section 2 we study Lelek maps and prove:

THEOREM 1.3: Let X be an (n+1)-dimensional compactum. Almost all maps in the function space $C(X,\mathbb{I})$ are n-dimensional Lelek maps.

In Section 3, Lelek and Bing maps are applied to prove Theorem 1.1.

2. Lelek maps

Let $f: X \longrightarrow Y$. For a > 0 denote

F(f,a)= the union of components A of the fibers of f with $\operatorname{diam} A\geq a$, and $F(f)=\bigcup_{i=1,\infty}F(f,1/i).$

Clearly F(f, a) is closed and hence F(f) is σ -compact. f is an n-dimensional Lelek map if dim $F(f) \leq n$.

PROPOSITION 2.1: Let X and Y be compacta. For every n > 0, the n-dimensional Lelek maps form a G_{δ} -subset of C(X,Y).

Proof: Let a, b > 0. Denote $U(a, b) = \{f \in C(X, Y) : d_{n+1}(F(f, a)) < b\}$ where $d_{n+1}(F) < b$ if there exists an open cover of F with mesh < b and order $\le n$ (see [4], p. 105). It is easy to verify that U(a, b) is open in C(X, Y). Then the set of n-dimensional Lelek maps $= \bigcap_{i,j=1,\infty} U(1/i, 1/j)$ and we are done.

PROPOSITION 2.2: Let X be an (n + 1)-dimensional compactum. The set of n-dimensional Lelek maps is dense in $C(X, \mathbb{I})$.

We give two proofs of this proposition. The first proof (A) is based on [11]. The second one (B) is selfcontained.

Proof A: Let $\mathbb{I} \subset D$ be embedded in a dendrite D with a dense set of end points and let $r: D \longrightarrow \mathbb{I}$ be a 0-dimensional retraction. r induces the continuous surjection $r^*\colon C(X,D) \longrightarrow C(X,\mathbb{I})$ defined by $r^*(f) = r\circ f$. Since r is 0-dimensional, f and $r\circ f$ have the same collection of non-trivial continua which are contained in their fibers. Hence r^* maps n-dimensional Lelek maps to n-dimensional Lelek maps. Take a 0-dimensional σ -compact subset Z of X such that $\dim X \setminus Z \leq n$. By Theorem 1.1 of [11] for almost all maps f in C(X,D) we have $\{x\} = f^{-1}f(x)$ for every $x \in Z$. This implies that such f are n-dimensional Lelek maps and by the above $r \circ f$ form a dense subset of n-dimensional Lelek maps in $C(X,\mathbb{I})$.

Proof B: Let Z be 0-dimensional and closed in X. For a > 0 denote

$$H(Z,a) = \{ f \in C(X,\mathbb{I}) \colon F(f,a) \cap Z = \emptyset \}.$$

It is clear that H(Z, a) is open in $C(X, \mathbb{I})$ and let us show that H(Z, a) is dense in $C(X, \mathbb{I})$.

Let $\epsilon > 0$ and let $f: X \longrightarrow \mathbb{I}$. We are going to ϵ -approximate f by a $g \in H(Z,a)$. Take a finite open cover V_1, V_2, \ldots, V_k of Z such that $\operatorname{cl} V_i$ are disjoint, diam $\operatorname{cl} V_i < a$ and diam $f(\operatorname{cl} V_i) < \epsilon$. Pick $g_i: \operatorname{cl} V_i \longrightarrow \mathbb{I}$ such that g_i are ϵ -close to f on $\operatorname{cl} V_i$ and

(*) $g_i(\partial V_i)$ are singletons and $g_i^{-1}(g_i(\partial V_i)) = \partial V_i$.

Now extend g_i to a $g \in C(X, \mathbb{I})$ ϵ -close to f and let us show that $g \in H(Z, a)$. Indeed, let a continuum T with diam $T \geq a$ be contained in a fiber of g. T does not intersect V_i since else T would intersect ∂V_i and hence would not meet V_i by (*). So $g \in H(Z, a)$ and this proves that H(Z, a) is dense. 260 M. LEVIN Isr. J. Math.

Take 0-dimensional compact subsets Z_i of X such that $\dim X \setminus \bigcup Z_i \leq n$. Then by the above $H = \bigcap_{i,j} H(Z_i, 1/j)$ is dense in $C(X, \mathbb{I})$ and for every $f \in H$, F(f) does not meet Z_i and hence $F(f) \subset X \setminus \bigcup Z_i$. Thus $\dim F(f) \leq n$ and we are done.

Propositions 2.1 and 2.2 imply Theorem 1.3.

Note that Proposition 2.2 and hence Theorem 1.3 hold for (n+1-k)-dimensional Lelek maps to \mathbb{I}^k .

Indeed, let $f = (f_1, \ldots, f_k)$: $X \longrightarrow \mathbb{I}^k$. Approximate f_1 by an n-dimensional Lelek map f_1^* , i.e. dim $F(f_1^*) = n$. Since $F(f_1^*)$ is σ -compact, by Theorem 1.3 f_2 can be approximated by a map f_2^* such that dim $F(f_2^*|_{F(f_1^*)}) \leq n-1$. Then (f_1^*, f_2^*) is an (n-1)-dimensional Lelek map and continue by induction on k.

3. Hyperspaces of 2-dimensional continua

The main aim of this section is to prove Theorem 1.1. We will prove:

THEOREM 3.1: Every 2-dimensional compactum X contains a 1-dimensional subcontinuum K which admits an open monotone map $q: K \longrightarrow T$ onto a continuum T of dim ≥ 2 .

Theorem 1.1 can easily be derived from Theorem 3.1: by [8] $\mathcal{C}(T)$ is infinite dimensional and since q is open and monotone on K, $\mathcal{C}(T)$ can be embedded in $\mathcal{C}(K)$ by $D \in \mathcal{C}(T) \longrightarrow q^{-1}(D) \in \mathcal{C}(K)$ and hence $\mathcal{C}(K)$ is also infinite dimensional.

Proof of Theorem 3.1: A map $W: \mathcal{C}(X) \longrightarrow \mathbb{R}^+$ is called a Whitney map if W vanishes on the set of singletons in $\mathcal{C}(X)$ and if $A \neq B$ in $\mathcal{C}(X)$ and $A \subset B$ implies W(A) < W(B) (see [10] for more information on hyperspaces).

Whitney maps always exist: if $\{f_n\}_{n=1}^{\infty}$ is a dense sequence of functions in $C(X,\mathbb{I})$ and $W_n(A) = \operatorname{diam} f_n(A)$, $W_n : C(X) \longrightarrow \mathbb{I}$ then $W = \sum_{n=1}^{\infty} W_n/2^n$ is a Whitney map.

Let W be a Whitney map for X. Take a 1-dimensional Bing-Lelek map $f \in C(X, \mathbb{I})$, i.e. a map which is both a Bing map and a 1-dimensional Lelek map. Such a map exists by Theorems 1.2 and 1.3. Let $f = h \circ g$ be the monotone-light decomposition of f with g monotone and h light. Then g is a 1-dimensional Bing-Lelek map to the 1-dimensional compactum Z = g(X).

Now we will apply a construction from [6]: for a > 0 define a decomposition \mathcal{A} of X by: the fibers $g^{-1}(z)$ of g with $W(g^{-1}(z)) < a$ and the continua A with W(A) = a which are contained in the fibers $g^{-1}(z)$ of g with $W(g^{-1}(z)) \geq a$.

It is easy to check that \mathcal{A} covers X. To show that \mathcal{A} is a decomposition we have to show that every 2 elements $A \neq B$ of \mathcal{A} which are contained in a fiber $g^{-1}(z)$ with $W(g^{-1}(z)) \geq a$ are disjoint. Each of them cannot be contained in the other as W(A) = W(B) and since $g^{-1}(z)$ is hereditarily indecomposable they have to be disjoint.

A is upper semicontinuous.

Proof: Let $A_1 \in g^{-1}(z_1), A_2 \in g^{-1}(z_2), \ldots$ be a sequence of elements of \mathcal{A} such that $\lim A_i = A$ in 2^X . Then $z = g(A) = \lim z_i$ and $W(A) = \lim W(A_i) \leq a$. It is easy to see that the two last conditions imply that A is contained in an element of \mathcal{A} and (i) follows.

Let $q: X \longrightarrow q(X)$ be the quotient map associated with \mathcal{A} . Clearly q is monotone. Denote $F = \bigcup \{g^{-1}(z): W(g^{-1}(z)) \geq a\}$. $F = q^{-1}(q(F))$ and F is closed and 1-dimensional since g is a 1-dimensional Lelek map.

(ii) The restriction of q to F is an open map.

Proof: Let $A_1, A_2, ...$ be a sequence of elements of \mathcal{A} which are contained in F, that is $W(A_i) = a$, and let $\lim A_i = A$ in 2^X . Then W(A) = a and A is contained in a fiber of g since A_i are contained in fibers of g. Hence $A \in \mathcal{A}$ and $A \subset F$ and (ii) follows.

Clearly $W(A) \leq a$ for $A \in \mathcal{A}$. So we can assume that for a small enough mesh \mathcal{A} will be so small that $\dim q(X) \geq \dim X = 2$ (see Corollary 9, p. 111, [4]). q coincides with g on $X \setminus F$ and hence $\dim q(X \setminus F) = \dim g(X \setminus F) \leq \dim g(X) = 1$. Then since F is closed $\dim q(X) = \max\{\dim q(F), \dim q(X \setminus F)\}$ and therefore $\dim q(F) \geq 2$.

Now pick a subcontinuum T of q(F) with $\dim T \geq 2$ and define $K = q^{-1}(T)$. K is a continuum as q is monotone and K is 1-dimensional since $K \subset F$. The restriction of q to K is an open map by (ii) and we are done.

Note that for a finite dimensional X with $\dim X \geq 3$, Theorem 3.1 holds with T infinite dimensional. Indeed, by [1] every compactum of $\dim \geq 3$ contains a hereditarily indecomposable subcontinuum of $\dim \geq 2$ which by Theorem 1.2 of [6] contains a 1-dimensional subcontinuum that admits an open monotone map onto an infinite dimensional continuum.

On the other hand, one can check that from Moore's theorem ([12], p. 171, Theorem 2.1') it follows that the monotone image of a closed subset of a 2-dimensional sphere is at most 2-dimensional. This shows that the estimate of the dimension of T in Theorem 3.1 cannot be improved.

References

- [1] R. H. Bing, Higher dimensional hereditarily indecomposable continua, Transactions of the American Mathematical Society 71 (1951), 267–273.
- [2] J. L. Kelley, Hyperspaces of a continuum, Transactions of the American Mathematical Society 52 (1942), 22–36.
- [3] J. Krasinkiewicz, On mappings with hereditarily indecomposable fibers, preprint.
- [4] K. Kuratowski, Topology II, Academic Press and PWN, 1968.
- [5] A. Lelek, On mappings that change dimension of spheres, Colloquium Mathematicum 10 (1963), 45–48.
- [6] M. Levin, Hyperspaces and open monotone maps of hereditarily indecomposable continua, Proceedings of the American Mathematical Society, to appear.
- [7] M. Levin, Bing maps and finite dimensional maps, Fundamenta Mathematicae 151 (1996), no. 1, 47-52.
- [8] M. Levin and Y. Sternfeld, The space of subcontinua of a 2-dimensional continuum is infinite dimensional, Proceedings of the American Mathematical Society, to appear.
- [9] M. Levin and Y. Sternfeld, Hyperspaces of two-dimensional continua, Fundamenta Mathematicae 150 (1996), no. 1, 17-24.
- [10] S. B. Nadler Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.
- [11] Y. Sternfeld, Mappings in dendrites and dimension, Houston Journal of Mathematics 19 (1993), 483–497.
- [12] G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, AMS, Providence, R.I., 1942.